Call for Papers   a href="https://bentham.manuscriptpoint.com/journals/acamc" class="submit_manuscript">Call for Papers  

Article Details


Differential Cytotoxicity, Cellular Uptake, Apoptosis and Inhibition of BRCA1 Expression of BRCA1-Defective and Sporadic Breast Cancer Cells Induced by an Anticancer Ruthenium(II)-Arene Compound, RAPTA-EA1

[ Vol. 17 , Issue. 2 ]

Author(s):

Adisorn Ratanaphan, Tidarat Nhukeaw, Khwanjira Hongthong and Paul J. Dyson   Pages 212 - 220 ( 9 )

Abstract:


Background: The RAPTA-EA1 complex [ruthenium(II)-arene 1,3,5-triaza-7-phosphaadamantane (pta) complex with an arene-tethered ethacrynic acid ligand] has been reported to overcome drug resistance that developed due to the current use of platinum-based treatments. However, the exact mechanism of action of RAPTA-EA1 remains largely unexplored and unknown. </p> <p> Objective: Here we have further studied the effect of RAPTA-EA1 on BRCA1-defective HCC1937 breast cancer cells and compared its effects on BRCA1-competent MCF-7 breast cancer cells. </p> <p> Method: HCC1937 and MCF-7 breast cancer cells were treated with the RAPTA-EA1 complex. The cytotoxicity of ruthenium-induced cells was evaluated by a MTT assay. Cellular uptake of ruthenium was determined by ICP-MS. Cell cycle and apoptosis were assessed using a flow cytometer. Expression of BRCA1 mRNA and its encoded protein was quantitated by a real-time RT-PCR and Western blotting. </p> <p> Results: Differences in cytotoxicity were correlated with the differential accumulations of ruthenium and the induction of apoptosis. The ruthenium complex caused dramatically more damage to the BRCA1 gene in the BRCA1-defective HCC1937 cells than to the BRCA1-competent MCF-7 cells. It decreased the expression of BRCA1 mRNA in the BRCA1-competent cells, while in contrast, its expression increased in the BRCA1-defective cells. However, the expression of the BRCA1 protein was significantly reduced in both types of breast cancer cells. </p> <p> Conclusion: The results presented here have demonstrated a differential cellular response for the BRCA1-defective and BRCA1-competent breast cancer cells to RAPTA-EA1. These findings have provided more insight into the actions and development of the ruthenium-based compounds for use for the treatment of breast cancer. </p> <p>

Keywords:

Breast cancer, RAPTA-EA1, replication, transcription, BRCA1 expression.

Affiliation:

Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112

Graphical Abstract:



Read Full-Text article